23 research outputs found

    Research on Mechanical Behavior of Viscoelastic Food Material in the Mode of Compressed Chewing

    Get PDF
    The degeneration mechanism of viscoelastic food material in specific processing mode affects the formulation of food material processing technology. On the other hand, it determines the taste of food in the chewing process. The viscoelastic food material was taken as the research object, and experimental data were obtained through stress relaxation experiments and strain relaxation experiments of texture analyzer material. Based on Maxwell model and Kelvin model, describing small deformation of the nonlinear viscoelastic constitutive model, building a composite model was proposed. By making analysis and comparison between constructed composite model and Maxwell model and Kelvin model, it was verified that the constructed composite model can be better described as the mechanical behavior of viscoelastic food material under the mode of compressed chewing, which is also providing a more precise theoretical model for the processing and development of viscoelastic food material

    The Data Acquisition System for the KOTO Experiment

    Full text link
    We developed and built a new system of readout and trigger electronics, based on the waveform digitization and pipeline readout, for the KOTO experiment at J-PARC, Japan. KOTO aims at observing the rare kaon decay KL→π0ννˉK_{L}\rightarrow\pi^{0}\nu\bar{\nu}. A total of 4000 readout channels from various detector subsystems are digitized by 14-bit 125-MHz ADC modules equipped with a 10-pole Bessel filter in order to reduce the pile-up effects. The trigger decision is made every 8-ns using the digitized waveform information. To avoid dead time, the ADC and trigger modules have pipelines in their FPGA chips to store data while waiting for the trigger decision. The KOTO experiment performed the first physics run in May 2013. The data acquisition system worked stably during the run.Comment: 5 pages,12 figures, Transactions on Nuclear Science, Proceedings of the 19th Real Time Conference, Preprin

    The Data Acquisition System for the KOTO Detector

    Get PDF
    AbstractThe Data Acquisition (DAQ) for the KOTO detector is designed around a 14-bit 125MHz ADC module, which measures the energy and the time of photomultiplier pulses from about 4000 readout channels. The Trigger has a two-tiered design, with a first level decision based on the time-aligned energy sum over the entire calorimeter and a second level decision based on clustering and in-time veto signal rejection. Data accepted by the second level trigger are read out via Gigabit Ethernet and passed to a computer farm for event building and data storage

    Ss-Sl2, a Novel Cell Wall Protein with PAN Modules, Is Essential for Sclerotial Development and Cellular Integrity of Sclerotinia sclerotiorum

    Get PDF
    The sclerotium is an important dormant body for many plant fungal pathogens. Here, we reported that a protein, named Ss-Sl2, is involved in sclerotial development of Sclerotinia sclerotiorum. Ss-Sl2 does not show significant homology with any protein of known function. Ss-Sl2 contains two putative PAN modules which were found in other proteins with diverse adhesion functions. Ss-Sl2 is a secreted protein, during the initial stage of sclerotial development, copious amounts of Ss-Sl2 are secreted and accumulated on the cell walls. The ability to maintain the cellular integrity of RNAi-mediated Ss-Sl2 silenced strains was reduced, but the hyphal growth and virulence of Ss-Sl2 silenced strains were not significantly different from the wild strain. Ss-Sl2 silenced strains could form interwoven hyphal masses at the initial stage of sclerotial development, but the interwoven hyphae could not consolidate and melanize. Hyphae in these interwoven bodies were thin-walled, and arranged loosely. Co-immunoprecipitation and yeast two-hybrid experiments showed that glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Woronin body major protein (Hex1) and elongation factor 1-alpha interact with Ss-Sl2. GAPDH-knockdown strains showed a similar phenotype in sclerotial development as Ss-Sl2 silenced strains. Hex1-knockdown strains showed similar impairment in maintenance of hyphal integrity as Ss-Sl2 silenced strains. The results suggested that Ss-Sl2 functions in both sclerotial development and cellular integrity of S. sclerotiorum

    Atomic Model of Rabbit Hemorrhagic Disease Virus by Cryo-Electron Microscopy and Crystallography

    Get PDF
    Rabbit hemorrhagic disease, first described in China in 1984, causes hemorrhagic necrosis of the liver. Its etiological agent, rabbit hemorrhagic disease virus (RHDV), belongs to the Lagovirus genus in the family Caliciviridae. The detailed molecular structure of any lagovirus capsid has yet to be determined. Here, we report a cryo-electron microscopic (cryoEM) reconstruction of wild-type RHDV at 6.5 A Ëš resolution and the crystal structures of the shell (S) and protruding (P) domains of its major capsid protein, VP60, each at 2.0 A Ëš resolution. From these data we built a complete atomic model of the RHDV capsid. VP60 has a conserved S domain and a specific P2 sub-domain that differs from those found in other caliciviruses. As seen in the shell portion of the RHDV cryoEM map, which was resolved to,5.5 AËš, the N-terminal arm domain of VP60 folds back onto its cognate S domain. Sequence alignments of VP60 from six groups of RHDV isolates revealed seven regions of high variation that could be mapped onto the surface of the P2 sub-domain and suggested three putative pockets might be responsible for binding to histo-blood group antigens. A flexible loop in one of these regions was shown to interact wit
    corecore